Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746225

RESUMEN

During heart failure, gene and protein expression profiles undergo extensive compensatory and pathological remodeling. We previously observed that fast skeletal myosin binding protein-C (fMyBP-C) is upregulated in diseased mouse hearts. While fMyBP-C shares significant homology with its cardiac paralog, cardiac myosin binding protein-C (cMyBP-C), there are key differences that may affect cardiac function. However, it is unknown if the expression of fMyBP-C expression in the heart is a pathological or compensatory response. We aim to elucidate the cardiac consequence of either increased or knockout of fMyBP-C expression. To determine the sufficiency of fMyBP-C to cause cardiac dysfunction, we generated cardiac-specific fMyBP-C over-expression mice. These mice were further crossed into a cMyBP-C null model to assess the effect of fMyBP-C in the heart in the complete absence of cMyBP-C. Finally, fMyBP-C null mice underwent transverse aortic constriction (TAC) to define the requirement of fMyBP-C during heart failure development. We confirmed the upregulation of fMyBP-C in several models of cardiac disease, including the use of lineage tracing. Low levels of fMyBP-C caused mild cardiac remodeling and sarcomere dysfunction. Exclusive expression of fMyBP-C in a heart failure model further exacerbated cardiac pathology. Following 8 weeks of TAC, fMyBP-C null mice demonstrated greater protection against heart failure development. Mechanistically, this may be due to the differential regulation of the myosin super-relaxed state. These findings suggest that the elevated expression of fMyBP-C in diseased hearts is a pathological response. Targeted therapies to prevent upregulation of fMyBP-C may prove beneficial in the treatment of heart failure. Significance Statement: Recently, the sarcomere - the machinery that controls heart and muscle contraction - has emerged as a central target for development of cardiac therapeutics. However, there remains much to understand about how the sarcomere is modified in response to disease. We recently discovered that a protein normally expressed in skeletal muscle, is present in the heart in certain settings of heart disease. How this skeletal muscle protein affects the function of the heart remained unknown. Using genetically engineered mouse models to modulate expression of this skeletal muscle protein, we determined that expression of this skeletal muscle protein in the heart negatively affects cardiac performance. Importantly, deletion of this protein from the heart could improve heart function suggesting a possible therapeutic avenue.

2.
Biophys Chem ; 307: 107195, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325036

RESUMEN

This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics. The calculated thermodynamic energies are correlated with interaction parameters, including Gibbs free energies and entropies, pertaining to the transfer of L-tryptophanfrom water to binary solvent blends of acetonitrile and water. Mathematical expressions are utilized to determine the transfer Gibbs free energies for chemical interactions, and the consequent entropies are clarified within the framework of solvent-solvent interactions. To expound upon the stability of L-tryptophan within the water-acetonitrile mixed system, we investigate the energetic aspects related to the transfer of chemicals Gibbs free energies. Additionally, standard temperature (298.15 K) is employed to calculate various related physicochemical parameters of solute/solvent.


Asunto(s)
Triptófano , Agua , Temperatura , Solubilidad , Termodinámica , Solventes
3.
Gels ; 10(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38391449

RESUMEN

The goal of this investigation is to improve the topical delivery of medicine by preparing and maximizing the potential of a nanotransferosome gel infused with Solanum xanthocarpum methanolic extract (SXE) to provide localized and regulated distribution. Thin-film hydration was used to create SXE-infused nanotransferosomes (SXE-NTFs), and a Box-Behnken design was used to improve them. Phospholipon 90G (X1), cholesterol (X2) and sodium cholate (X3) were chosen as the independent variables, and their effects on vesicle size (Y1), polydispersity index (PDI) (Y2) and the percentage of entrapment efficiency (EE) (Y3) were observed both individually and in combination. For the SXE-NTFs, the vesicle size was 146.3 nm, the PDI was 0.2594, the EE was 82.24 ± 2.64%, the drug-loading capacity was 8.367 ± 0.07% and the drug release rate was 78.86 ± 5.24%. Comparing the antioxidant activity to conventional ascorbic acid, it was determined to be 83.51 ± 3.27%. Ex vivo permeation tests revealed that the SXE-NTF gel (82.86 ± 2.38%) considerably outperformed the SXE gel (35.28 ± 1.62%) in terms of permeation. In addition, it seemed from the confocal laser scanning microscopy (CLSM) picture of the Wistar rat's skin that the rhodamine-B-loaded SXE-NTF gel had a higher penetration capability than the control. Dermatokinetic studies showed that the SXE-NTF gel had a better retention capability than the SXE gel. According to the experimental results, the SXE-NTF gel is a promising and successful topical delivery formulation.

4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38004427

RESUMEN

In a continuous search for an essential antidiabetic agent, Sida cordifolia hydroalcoholic (SCHA) extract-loaded chitosan nanoparticles (SCHA-CS-NP) were optimized. The Box-Behnken design (BBD Design-Expert software, version 14) with three parameters was used to optimize the nanoparticles after creating them using the ion gelation method. The chitosan and Tween 20 contents and the stirring speed were chosen as the independent variables, and their separate and combined effects on particle size (Y1), polydispersity index (Y2) and entrapment efficiency (Y3) were observed. The optimized formulation showed a particle size of 51 nm, an entrapment efficiency of 84.54% and a polydispersity index of 0.391. Physicochemical characterization, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), a drug release study, an ex vivo permeation study, and an antioxidant study were performed. Confocal laser scanning microscopy (CLSM) images demonstrated that chitosan nanoparticles loaded with rhodamine B-laden SCHA extract had superior penetration compared to the control (rhodamine B solution). Furthermore, compared to conventional ascorbic acid (IC50 = 45 µg/mL), a superior antioxidant activity was discovered for SCHA-CS-NPs (IC50 = 86.45 ± 2.24 µg/mL), while SCHA-CS-NPs also exhibited strong antidiabetic potential (IC50 = 93.71 ± 1.79 µg/mL) compared to standard acarbose (IC50 = 97.25 ± 1.43 µg/mL). The overall results demonstrated that SCHA-CS-NPs are a promising and efficient formulation for oral delivery.

5.
Gels ; 9(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888364

RESUMEN

In this study, hesperidin was loaded into a transethosome and was developed employing the rotary evaporator method. The formulation was optimized using the Box-Behnken design (BBD). The optimized HSD-TE formulation has a spherical shape, vesicle size, polydispersity index, entrapment efficiency, and zeta potential within the range of 178.98 nm; the PDI was 0.259 with a zeta potential of -31.14 mV and % EE of 89.51%, respectively. The in vitro drug release shows that HSD-TE exhibited the release of 81.124 ± 3.45% in comparison to HSD suspension. The ex vivo skin permeation showed a 2-fold increase in HSD-TE gel permeation. The antioxidant activity of HSD-TE was found to be 79.20 ± 1.77% higher than that of the HSD solution. The formulation showed 2-fold deeper HSD-TE penetration across excised rat skin membranes in confocal laser microscopy scanning, indicating promising in vivo prospects. In a dermatokinetic study, HSD-TE gel was compared to HSD conventional gel where TE significantly boosted HSD transport in the epidermis and dermal layers. The formulation showed greater efficacy than free HSD in the inhibition of microbial growth, as evidenced by antibacterial activity on the Gram-negative and positive bacteria. These investigations found that the HSD-TE formulation could enhance the topical application in the management of cutaneous bacterial infections.

6.
Gels ; 9(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37888405

RESUMEN

Strychnine (STCN) has demonstrated an exceptional anticancer effect against various cancers. However, the STCN clinical utility has been hampered by its low water solubility, restricted therapeutic window, short half-life, and significant toxicity. The objective of this investigation was to design and optimize a formulation of strychnine-loaded transliposomes (STCN-TLs) for dermal administration of STCN to treat skin cancer. The formulations of STCN-TL were examined in terms of vesicle size (VS), polydispersity index (PDI), entrapment efficiency (EE), and in vitro delivery. The improved STCN-TL formulation exhibited VS, PDI, EE, and in vitro delivery of 101.5 ± 2.14 nm, 0.218 ± 0.12, 81.74 ± 1.43%, and 85.39 ± 2.33%, respectively. In an ex vivo penetration, the created STCN-TL formulation demonstrated a 2.5-fold increase in permeability compared to the STCN solution. CLSM pictures of skin (rat) revealed that the rhodamine B-loaded transliposome preparation penetrated deeper than the rhodamine B hydroalcoholic mixture. Additionally, rat skin managed with STCN-TL nanogel exhibited a significant increase in Cskin max and AUC0-8 compared to rat skin treated with traditional STCN gel. The findings demonstrated that the transliposome preparation might be a suitable nanocarrier for the cutaneous distribution of STCN in the amelioration of skin cancer.

7.
Saudi Pharm J ; 31(11): 101788, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37811124

RESUMEN

Solanum xanthocarpum (SX) has been used to treat a variety of diseases, including skin disorders like psoriasis (PSO). SX possesses many pharmacological activities of anti-inflammatory, anti-cancer, immunosuppressive, and healing qualities. However, the multi-target mechanism of SX on PSO still needs clarity. Materials and methods: The Indian Medicinal Plants, Phytochemicals and Therapeutics (IMPPAT) database and the Swiss Target Prediction online tool were used to find the active phytochemical components and their associated target proteins. OMIM and GeneCards databases were used to extract PSO-related targets. A Venn diagram analysis determined the common targets of SX against PSO. Subsequently, the protein-protein interaction (PPI) network and core PPI target analysis were carried out using the STRING network and Cytoscape software. Also, utilising the online Metascape and bioinformatics platform tool, a pathway enrichment analysis of common targets using the Kyoto Encyclopaedia of Genes and Genome (KEGG) and Gene Ontology (GO) databases was conducted to verify the role of targets in biological processes, cellular components and molecular functions with respect to KEGG pathways. Lastly, molecular docking simulations were performed to validate the strong affinity between components of SX and key target receptors. Results: According to the IMPPAT Database information, 8 active SX against PSO components were active. According to the PPI network and core targets study, the main targets against PSO were EGFR, SRC, STAT3, ERBB2, PTK2, SYK, EP300, CBL, TP53, and AR. Moreover, molecular docking simulations verified the binding interaction of phytochemical SX components with their PSO targets. Last but not least, enrichment analysis showed that SX is involved in several biological processes, including peptidyl-tyrosine phosphorylation, peptidyl-tyrosine modification, and peptidyl-serine modification. The relevant KEGG signalling pathways are the PI3K-AKT signalling pathway, the EGFR tyrosine kinase inhibitor resistance pathway, and the MAPK signalling pathway. Conclusion: The network pharmacology technique, which is based on data interpretation and molecular docking simulation techniques, has proven the multi-target function of SX phytoconstituents.

8.
Saudi Pharm J ; 31(10): 101785, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37766819

RESUMEN

One of the most prevalent lifestyle diseases, diabetes mellitus (DM) is brought on by an endocrine issue. DM is frequently accompanied by hyperglycemia, a disease that typically results in an excess of free radicals that stress tissues. The medical community is currently concentrating on creating therapeutic medications with roots in nature to lessen the damage associated with hyperglycemia. Solanum xanthocarpum has a number of medicinal benefits. The investigation aimed to produce and analyze niosomal formulations containing S. xanthocarpum extract (SXE). Niosomes were made by implementing the solvent evaporation process, which was further optimized using Box-Behnken design. Drug release, DPPH assessments, α-amylase inhibition assay, α-glucosidase inhibition assay, and confocal laser scanning microscopy (CLSM) investigation were all performed on the developed formulation (SXE-Ns-Opt). SXE-Ns-Opt displayed a 253.6 nm vesicle size, a PDI of 0.108, 62.4% entrapment efficiency, and 84.01% drug release in 24 h. The rat's intestinal CLSM image indicated that the rhodamine red B-loaded SXE-Ns-Opts had more intestinal penetration than the control. Additionally, the antioxidant effect of the obtained formulation was demonstrated as 89.46% as compared to SXE (78.10%). Additionally, acarbose, SXE, and SXE-Ns-Opt each inhibited the activity of α-amylase by 95.11%, 85.88%, and 89.87%, and also suppressed the enzyme of α-glucosidase by 88.47%, 81.07%, and 85.78%, respectively. To summarise, the establishment of the SXE-Ns-Opt formulation and its characterization demonstrated the legitimacy of the foundation. A promising candidate for the treatment of diabetes mellitus has been shown as in vitro studies, antioxidant against oxidative stress, CLSM of rat's intestine and a high degree of penetration of formulation.

9.
Saudi Pharm J ; 31(8): 101669, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576853

RESUMEN

Previous investigations have shown that D. viscosa herbal extract is often used to treat a variety of diseases. Therefore, the purpose of this study was to investigate any additional potential impacts on rat liver and kidney damage induced by diabetes. Streptozotocin (STZ) (60 mg/kg/day) was given as a single dosage to cause type 1 diabetes. After then, diabetic rats received oral doses of D. viscosa for four weeks at 150 and 300 mg/kg/day. Blood, liver, and kidney tissues were collected at the end of the treatment and examined. Analysis was made of the serum lipid profile, liver, and kidney functions, as well as blood biochemistry. Moreover, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1ß), prostaglandin E-2 (PGE-2), and nitric oxide (NO) were estimated in serum. In liver and kidney samples, thiobarbituric acid reactive substances (TBARs) and reduced glutathione (GSH), as well as the pro-inflammatory cytokines and enzymatic activities of glutathione peroxidase (GPx), glutathione reeducates (GR), glutathione-S-transferase (GST), catalase (CAT), and superoxide dismutase (SOD) were analyzed. Histological changes in liver and kidney cross-sections were also observed. Our findings demonstrated that D. viscosa dramatically decreased pro-inflammatory indicators in blood, kidney, and liver tissues as well as blood glucose, and restored insulin levels, and lipid profiles. Additionally, it significantly raises the antioxidant enzyme activity SOD, CAT, GPx, and GST, while significantly lowering TBARs levels. The above-mentioned biochemical changes that took place in tissues were further supported by histological alterations. These findings imply that D. viscosa protects against STZ-induced hyperglycemia, aberrant lipid synthesis, and oxidative stress and that these benefits may be mediated by interacting with various targets to increase the levels of antioxidant enzymes in the liver and kidneys. Its mode of action and safety for use as medicine against various metabolic problems caused by diabetes require more research.

10.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37111255

RESUMEN

Phytochemical investigation of the ethanolic extract of the aerial parts of Sisymbrium irio L. led to the isolation of four unsaturated fatty acids (1-4), including a new one (4), and four indole alkaloids (5-8). The structures of the isolated compounds were characterized with the help of spectroscopic techniques such as 1D, 2D NMR, and mass spectroscopy, and by correlation with the known compounds. In terms of their notable structural diversity, a molecular docking approach with the AutoDock 4.2 program was used to analyze the interactions of the identified fatty acids with PPAR-γ and the indole alkaloids with 5-HT1A and 5-HT2A, subtypes of serotonin receptors, respectively. Compared to the antidiabetic drug rivoglitazone, compound 3 acted as a potential PPAR-γ agonist with a binding energy of -7.4 kcal mol-1. Moreover, compound 8 displayed the strongest affinity, with binding energies of -6.9 kcal/mol to 5HT1A and -8.1 kcal/mol to 5HT2A, using serotonin and the antipsychotic drug risperidone as positive controls, respectively. The results of docked conformations represent an interesting target for developing novel antidiabetic and antipsychotic drugs and warrant further evaluation of these ligands in vitro and in vivo. On the other hand, an HPTLC method was developed to quantify α-linolenic acid in the hexane fraction of the ethanol extract of S. irio. The regression equation/correlation coefficient (r2) for linolenic acid was Y = 6.49X + 2310.8/0.9971 in the linearity range of 100-1200 ng/band. The content of α-linolenic acid in S. irio aerial parts was found to be 28.67 µg/mg of dried extract.

11.
bioRxiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36711986

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury and the resulting cardiac remodeling is a common cause of heart failure. The RNA binding protein Human Antigen R (HuR) has been previously shown to reduce cardiac remodeling following both I/R and cardiac pressure overload, but the full extent of the HuR-dependent mechanisms within cells of the myocardium have yet to be elucidated. In this study, we applied a novel small molecule inhibitor of HuR to define the functional role of HuR in the acute response to I/R injury and gain a better understanding of the HuR-dependent mechanisms during post-ischemic myocardial remodeling. Our results show an early (two hours post-I/R) increase in HuR activity that is necessary for early inflammatory gene expression by cardiomyocytes in response to I/R. Surprisingly, despite the reductions in early inflammatory gene expression at two hours post-I/R, HuR inhibition has no effect on initial infarct size at 24-hours post-I/R. However, in agreement with previously published work, we do see a reduction in pathological remodeling and preserved cardiac function at two weeks post-I/R upon HuR inhibition. RNA-sequencing analysis of neonatal rat ventricular myocytes (NRVMs) at two hours post-LPS treatment to model damage associated molecular pattern (DAMP)-mediated activation of toll like receptors (TLRs) demonstrates a broad HuR-dependent regulation of pro-inflammatory chemokine and cytokine gene expression in cardiomyocytes. We show that conditioned media from NRVMs pre-treated with HuR inhibitor loses the ability to induce inflammatory gene expression in bone marrow derived macrophages (BMDMs) compared to NRVMs treated with LPS alone. Functionally, HuR inhibition in NRVMs also reduces their ability to induce endocrine migration of peripheral blood monocytes in vitro and reduces post-ischemic macrophage infiltration to the heart in vivo. In summary, these results suggest a HuR-dependent expression of pro-inflammatory gene expression by cardiomyocytes that leads to subsequent monocyte recruitment and macrophage activation in the post-ischemic myocardium.

12.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011528

RESUMEN

In this study, ultrasound-assisted extraction conditions were optimized to maximize the yields of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol from S. alexandrina (aerial parts). The three UAE factors, extraction temperature (S1), extraction time (S2), and liquid to solid ratio (S3), were optimized using response surface methodology (RSM). A Box-Behnken design was used for experimental design and phytoconstituent analysis was performed using high-performance liquid chromatography-UV. The optimal extraction conditions were found to be a 64.2 °C extraction temperature, 52.1 min extraction time, and 25.2 mL/g liquid to solid ratio. The experimental values of sennoside A, sennoside B, aloe-emodin, emodin, and chrysophanol (2.237, 12.792, 2.457, 0.261, and 1.529%, respectively) agreed with those predicted (2.152, 12.031, 2.331, 0.214, and 1.411%, respectively) by RSM models, thus demonstrating the appropriateness of the model used and the accomplishment of RSM in optimizing the extraction conditions. Excellent antioxidant properties were exhibited by S. alexandrina methanol extract obtained using the optimized extraction conditions with a DPPH assay (IC50 = 59.7 ± 1.93, µg/mL) and ABTS method (47.2 ± 1.40, µg/mL) compared to standard ascorbic acid.


Asunto(s)
Antioxidantes/farmacología , Fraccionamiento Químico/métodos , Componentes Aéreos de las Plantas/química , Extracto de Senna/farmacología , Senna/química , Sonicación , Ondas Ultrasónicas , Algoritmos , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Modelos Teóricos , Estructura Molecular , Fitoquímicos , Extracto de Senna/química , Extracto de Senna/aislamiento & purificación
13.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884909

RESUMEN

The limited ability of mammalian adult cardiomyocytes to proliferate following an injury to the heart, such as myocardial infarction, is a major factor that results in adverse fibrotic and myocardial remodeling that ultimately leads to heart failure. The continued high degree of heart failure-associated morbidity and lethality requires the special attention of researchers worldwide to develop efficient therapeutics for cardiac repair. Recently, various strategies and approaches have been developed and tested to extrinsically induce regeneration and restoration of the myocardium after cardiac injury have yielded encouraging results. Nevertheless, these interventions still lack adequate success to be used for clinical interventions. This review highlights and discusses both cell-based and cell-free therapeutic approaches as well as current advancements, major limitations, and future perspectives towards developing an efficient therapeutic method for cardiac repair.


Asunto(s)
Infarto del Miocardio/patología , Comunicación Paracrina , Animales , Tratamiento Basado en Trasplante de Células y Tejidos , Exosomas/metabolismo , Exosomas/trasplante , Humanos , Infarto del Miocardio/terapia , Comunicación Paracrina/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
14.
Hum Mol Genet ; 30(18): 1734-1749, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34007987

RESUMEN

High-altitude (HA, >2500 m) hypoxic exposure evokes several physiological processes that may be abetted by differential genetic distribution in sojourners, who are susceptible to various HA disorders, such as high-altitude pulmonary edema (HAPE). The genetic variants in hypoxia-sensing genes influence the transcriptional output; however the functional role has not been investigated in HAPE. This study explored the two hypoxia-sensing genes, prolyl hydroxylase domain protein 2 (EGLN1) and factor inhibiting HIF-1α (HIF1AN) in HA adaptation and maladaptation in three well-characterized groups: highland natives, HAPE-free controls and HAPE-patients. The two genes were sequenced and subsequently validated through genotyping of significant single nucleotide polymorphisms (SNPs), haplotyping and multifactor dimensionality reduction. Three EGLN1 SNPs rs1538664, rs479200 and rs480902 and their haplotypes emerged significant in HAPE. Blood gene expression and protein levels also differed significantly (P < 0.05) and correlated with clinical parameters and respective alleles. The RegulomeDB annotation exercises of the loci corroborated regulatory role. Allele-specific differential expression was evidenced by luciferase assay followed by electrophoretic mobility shift assay, liquid chromatography with tandem mass spectrometry and supershift assays, which confirmed allele-specific transcription factor (TF) binding of FUS RNA-binding protein (FUS) with rs1538664A, Rho GDP dissociation inhibitor 1 (ARHDGIA) with rs479200T and hypoxia upregulated protein 1 (HYOU1) with rs480902C. Docking simulation studies were in sync for the DNA-TF structural variations. There was strong networking among the TFs that revealed physiological consequences through relevant pathways. The two hydroxylases appear crucial in the regulation of hypoxia-inducible responses.


Asunto(s)
Mal de Altura , Sitios Genéticos , Hipertensión Pulmonar , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Oxigenasas de Función Mixta , Polimorfismo de Nucleótido Simple , Edema Pulmonar , Proteínas Represoras , Células A549 , Altitud , Mal de Altura/enzimología , Mal de Altura/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Hipertensión Pulmonar/enzimología , Hipertensión Pulmonar/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/biosíntesis , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Masculino , Oxigenasas de Función Mixta/biosíntesis , Oxigenasas de Función Mixta/genética , Edema Pulmonar/enzimología , Edema Pulmonar/genética , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Factores de Riesgo
15.
Am J Physiol Heart Circ Physiol ; 321(1): H228-H241, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34018851

RESUMEN

Adipose tissue homeostasis plays a central role in cardiovascular physiology, and the presence of thermogenically active brown adipose tissue (BAT) has recently been associated with cardiometabolic health. We have previously shown that adipose tissue-specific deletion of HuR (Adipo-HuR-/-) reduces BAT-mediated adaptive thermogenesis, and the goal of this work was to identify the cardiovascular impacts of Adipo-HuR-/-. We found that Adipo-HuR-/- mice exhibit a hypercontractile phenotype that is accompanied by increased left ventricle wall thickness and hypertrophic gene expression. Furthermore, hearts from Adipo-HuR-/- mice display increased fibrosis via picrosirius red staining and periostin expression. To identify underlying mechanisms, we applied both RNA-seq and weighted gene coexpression network analysis (WGCNA) across both cardiac and adipose tissue to define HuR-dependent changes in gene expression as well as significant relationships between adipose tissue gene expression and cardiac fibrosis. RNA-seq results demonstrated a significant increase in proinflammatory gene expression in both cardiac and subcutaneous white adipose tissue (scWAT) from Adipo-HuR-/- mice that is accompanied by an increase in serum levels of both TNF-α and IL-6. In addition to inflammation-related genes, WGCNA identified a significant enrichment in extracellular vesicle-mediated transport and exosome-associated genes in scWAT, whose expression most significantly associated with the degree of cardiac fibrosis observed in Adipo-HuR-/- mice, implicating these processes as a likely adipose-to-cardiac paracrine mechanism. These results are significant in that they demonstrate the spontaneous onset of cardiovascular pathology in an adipose tissue-specific gene deletion model and contribute to our understanding of how disruptions in adipose tissue homeostasis may mediate cardiovascular disease.NEW & NOTEWORTHY The presence of functional brown adipose tissue in humans is known to be associated with cardiovascular health. Here, we show that adipocyte-specific deletion of the RNA binding protein HuR, which we have previously shown to reduce BAT-mediated thermogenesis, is sufficient to mediate a spontaneous development of cardiac hypertrophy and fibrosis. These results may have implications on the mechanisms by which BAT function and adipose tissue homeostasis directly mediate cardiovascular disease.


Asunto(s)
Adipocitos/metabolismo , Cardiomegalia/genética , Proteína 1 Similar a ELAV/genética , Miocardio/metabolismo , Adipocitos/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteína 1 Similar a ELAV/metabolismo , Fibrosis/genética , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Noqueados , Miocardio/patología
16.
Cells ; 10(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807406

RESUMEN

Dilated cardiomyopathy (DCM) is characterized by pathologic cardiac remodeling resulting in chambers enlargement and impaired heart contractility. Previous reports and our in-silico analysis support the association of DCM phenotype and impaired tissue angiogenesis. Here, we explored whether the modulation in cardiac angiogenesis partly intervenes or rescues the DCM phenotype in mice. Here, a DCM mouse model [α-tropomyosin 54 (α-TM54) mutant] was crossbred with microRNA-210 transgenic mice (210-TG) to develop microRNA-210 (miR-210) overexpressing α-TM54 mutant mice (TMx210). Contrary to wild-type (WT) and 210-TG mice, a significant increase in heart weight to body weight ratio in aged mixed-gender TMx210 and DCM mice was recorded. Histopathological analysis revealed signs of pathological cardiac remodeling such as myocardial disarray, myofibrillar loss, and interstitial fibrosis in DCM and TMx210 mice. Contrary to WT and DCM, a significant increase in angiogenic potential was observed in TMx210 and 210-TG mice hearts which is reflected by higher blood vessel density and upregulated proangiogenic vascular endothelial growth factor-A. The echocardiographic assessment showed comparable cardiac dysfunction in DCM and TMx210 mice as compared to WT and 210-TG. Overall, the present study concludes that miR-210 mediated upregulated angiogenesis is not sufficient to rescue the DCM phenotype in mice.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Neovascularización Fisiológica , Regulación hacia Arriba , Animales , Cardiomiopatía Dilatada/genética , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Mutación/genética , Neovascularización Fisiológica/genética , Fenotipo , Transducción de Señal , Tropomiosina/genética
17.
Molecules ; 26(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810340

RESUMEN

Parthenolide, a strong cytotoxic compound found in different parts of Tarchonanthus camphoratus which motivated the authors to develop an optimized microwave-assisted extraction (MEA) method using Box-Behnken design (BBD) for efficient extraction of parthenolide from the stem of T. camphoratus and its validation by high-performance thin-layer chromatography (HPTLC) and cytotoxic analysis. The optimized parameters for microwave extraction were determined as: 51.5 °C extraction temperature, 50.8 min extraction time, and 211 W microwave power. A quadratic polynomial model was found the most suitable model with R2 of 0.9989 and coefficient of variation (CV) of 0.2898%. The high values of adjusted R2 (0.9974), predicted R2 (0.9945), and signal-to-noise ratio (74.23) indicated a good correlation and adequate signal, respectively. HPTLC analyzed the parthenolide (Rf = 0.16) content in T. camphoratus methanol extract (TCME) at λmax = 575 nm and found it as 0.9273% ± 0.0487% w/w, which was a higher than expected yield (0.9157% w/w). The TCME exhibited good cytotoxicity against HepG2 and MCF-7 cell lines (IC50 = 30.87 and 35.41 µg/mL, respectively), which further supported our findings of high parthenolide content in TCME. This optimized MAE method can be further applied to efficiently extract parthenolide from marketed herbal supplements containing different Tarconanthus species.


Asunto(s)
Antineoplásicos , Asteraceae/química , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/química , Sesquiterpenos , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Fraccionamiento Químico , Células Hep G2 , Humanos , Células MCF-7 , Microondas , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Temperatura
18.
Saudi J Biol Sci ; 28(1): 813-824, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424371

RESUMEN

Current pre-clinical evidences of Centella focus on its pharmacological effects on normal wound healing but there are limited studies on the bioactivity of Centella in cellular dysfunction associated with diabetic wounds. Hence we planned to examine the potential of Centella cordifolia in inhibiting methylglyoxal (MGO)-induced extracellular matrix (ECM) glycation and promoting the related cellular functions. A Cell-ECM adhesion assay examined the ECM glycation induced by MGO. Different cell types that contribute to the healing process (fibroblasts, keratinocytes and endothelial cells) were evaluated for their ability to adhere to the glycated ECM. Methanolic extract of Centella species was prepared and partitioned to yield different solvent fractions which were further analysed by high performance liquid chromatography equipped with photodiode array detector (HPLC-PDA) method. Based on the antioxidant [2,2-diphenyl-1-picrylhydrazyl (DPPH) assay] screening, anti-glycation activity and total phenolic content (TPC) of the different Centella species and fractions, the ethyl acetate fraction of C. cordifolia was selected for further investigating its ability to inhibit MGO-induced ECM glycation and promote cellular distribution and adhesion. Out of the three Centella species (C. asiatica, C. cordifolia and C. erecta), the methanolic extract of C. cordifolia showed maximum inhibition of Advanced glycation end products (AGE) fluorescence (20.20 ± 4.69 %, 25.00 ± 3.58 % and 16.18 ± 1.40 %, respectively). Its ethyl acetate fraction was enriched with phenolic compounds (3.91 ± 0.12 mg CAE/µg fraction) and showed strong antioxidant (59.95 ± 7.18 µM TE/µg fraction) and antiglycation activities. Improvement of cells spreading and adhesion of endothelial cells, fibroblasts and keratinocytes was observed for ethyl acetate treated MGO-glycated extracellular matrix. Significant reduction in attachment capacity of EA.hy926 cells seeded on MGO-glycated fibronectin (41.2%) and attachment reduction of NIH3t3 and HaCaT cells seeded on MGO-glycated collagen (33.7% and 24.1%, respectively) were observed. Our findings demonstrate that ethyl acetate fraction of C. cordifolia was effective in attenuating MGO-induced glycation and cellular dysfunction in the in-vitro wound healing models suggesting that C. cordifolia could be a potential candidate for diabetic wound healing. It could be subjected for further isolation of new phytoconstituents having potential diabetic wound healing properties.

19.
Pharm Biol ; 59(1): 941-952, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35294328

RESUMEN

CONTEXT: Traditionally, Inula racemosa Hook. f. (Asteraceae) has been reported to be effective in cancer treatment which motivated the authors to explore the plant for novel anticancer compounds. OBJECTIVE: To isolate and characterize new cytotoxic phytoconstituents from I. racemosa roots. MATERIALS AND METHODS: The column chromatography of I. racemosa ethyl acetate extract furnished a novel sesquiterpene lactone whose structure was established by NMR (1D/2D), ES-MS and its cytotoxic properties were assessed on HeLa, MDAMB-231, and A549 cell lines using MTT and LDH (lactate dehydrogenase) assays. Further, morphological changes were analyzed by flow cytometry, mitochondrial membrane potential, AO-EtBr dual staining, and comet assay. Molecular docking and simulation were performed using Glide and Desmond softwares, respectively, to validate the mechanism of action. RESULTS: The isolated compound was identified as racemolactone I (compound 1). Amongst the cell lines tested, considerable changes were observed in HeLa cells. Compound 1 (IC50 = 0.9 µg/mL) significantly decreased cell viability (82%) concomitantly with high LDH release (76%) at 15 µg/mL. Diverse morphological alterations along with significant increase (9.23%) in apoptotic cells and decrease in viable cells were observed. AO-EtBr dual staining also confirmed the presence of 20% apoptotic cells. A gradual decrease in mitochondrial membrane potential was observed. HeLa cells showed significantly increased comet tail length (48.4 µm), indicating broken DNA strands. In silico studies exhibited that compound 1 binds to the active site of Polo-like kinase-1 and forms a stable complex. CONCLUSIONS: Racemolactone I was identified as potential anticancer agent, which can further be confirmed by in vivo investigations.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Inula/química , Lactonas/farmacología , Sesquiterpenos/farmacología , Células A549 , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Lactonas/administración & dosificación , Lactonas/aislamiento & purificación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Raíces de Plantas , Sesquiterpenos/administración & dosificación , Sesquiterpenos/aislamiento & purificación
20.
Exp Biol Med (Maywood) ; 246(7): 851-860, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33327780

RESUMEN

Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.


Asunto(s)
Aloinjertos/inmunología , Rechazo de Injerto/inmunología , Trasplante de Corazón , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Animales , Trasplante de Corazón/métodos , Humanos , Terapia de Inmunosupresión/métodos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...